

Simulator for airborne laser-based

sampling

Liviu Ene

laser-based sampling

Intro

- related to the Hedmark project
- partners:
 - UMB
 - NASA
 - Yale University(USA)
 - SLU(Sweden)
 - Norwegian NFI
- parallell development at UMB and SLU
 - UMB version based on empirical measurements
 - SLU is focusing on intensive modelling work

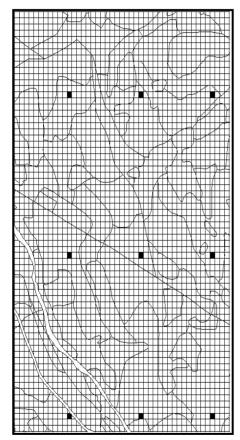
laser-based

sampling

Maccellt + 10000 M

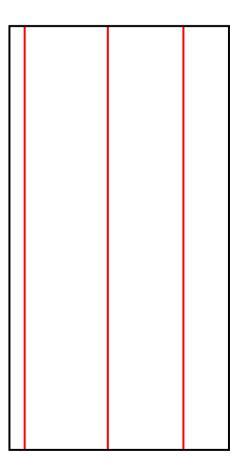
Intro

- profiling LIDAR can provide estimates for large areas at low costs
- scanning LIDAR provides accurate referred data for "wallto-wall" forest mapping
 - expensive for regional inventories
- increasing demand for sub-regional estimates(e.g. at sub-county level)



Simulator for airborne laser-based sampling

LiDAR- based sampling methods


Sampling by scanning

"Wall-to-wall"

11111111		
+++++++++++++++++++++++++++++++++++++++		
+++++++++++++++++++++++++++++++++++++++		₩ 111111/1
+++++++++++++++++++++++++++++++++++++++	1711HLD	
+++++++++++++++++++++++++++++++++++++++		ннинц
+++++++++		
<i>H</i>		
1		

		++++++*++++
нини		
	ппипп	1111111111
<u> <u> </u></u>		
		+++++yr+++1
MILLAN LA		
	+++++++++++++++++++++++++++++++++++++++	
		191111111111
		++++=+++++++
++++++++ ++ +		+++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++
		+++++++++++++++++++++++++++++++++++++++
	+++++++++++++++++++++++++++++++++++++++	+++++++++++++++++++++++++++++++++++++++
₽ ſ\\\\\™™		++++++++++++
+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++
+++++++++++++++++++++++++++++++++++++++		++++++++++++
+++++++++++++++++++++++++++++++++++++++		
+++++++++++++++++++++++++++++++++++++++		NUTIN
	+++++++++++++++++++++++++++++++++++++++	
+++++++++++++++++++++++++++++++++++++++		+++++++++++++++++++++++++++++++++++++++
		+++++++++++++++++++++++++++++++++++++++
	NUM	
		1+++11+21311
	///www.ma	
	TTTT#TT	····
		111/111114
		++++/+++++++
		+++11+++++++
		PTTTTTTT
	шпипп	{ <u>}</u>
		ннни
		THAT

Sampling by profiling

laser-based sampling

UHULERSITY OF THE SCIENCE

Intro

- using airborne scanning LiDAR as a strip sampling tool for regional and sub-regional forest inventories
 - previous studies using double sampling framework
 - do not make full use of the LiDAR data

assessement against profiling LiDAR

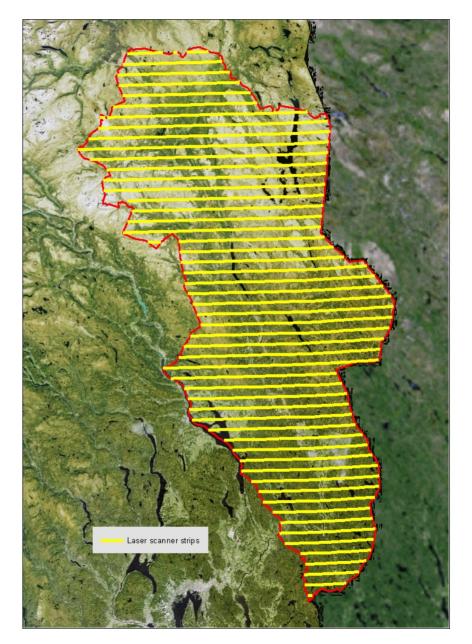
laser-based sampling

Material

- the target region is Hedmark county, Norway
 - total area of ca. 27,000 km2
 - 13,420 km2 productive forests dominated by:
 - Scotch pine(48 %)
 - Norway spruce(42 %)
 - birch(8 %) as dominant deciduous tree species

laser-based sampling

4105000W


Material

- field data:
 - ca 2200 NFI plots
 - 3x3 km grid
 - circular plots of 250m2
 - 120-900m a.s.l
 - all trees with dbh>4cm callipered
 - 10 tree heights per plot measured, on average
 - plot centers geolocated within 1m accuracy
 - georeferenced tree locations

laser-based sampling

Material

- LiDAR data:
 - Optech ALTM 3100C
 - 6km spacing between flight lines, ca 4500 km flight lines
 - ca 2.8 pulses/m2
 - footprint ca 24cm
 - (x,y) accuracy ca 40cm
 - flown over ca 50% of the NFI plots (8.4 % of the area)
 - up to four returns per pulse

laser-based sampling

Framework

- design based, model-assisted approach
- generate a synthetic population using empirical data
- consider the syntethic population as fixed
- assess the population parameters independently by simulations

laser-based sampling

Framework

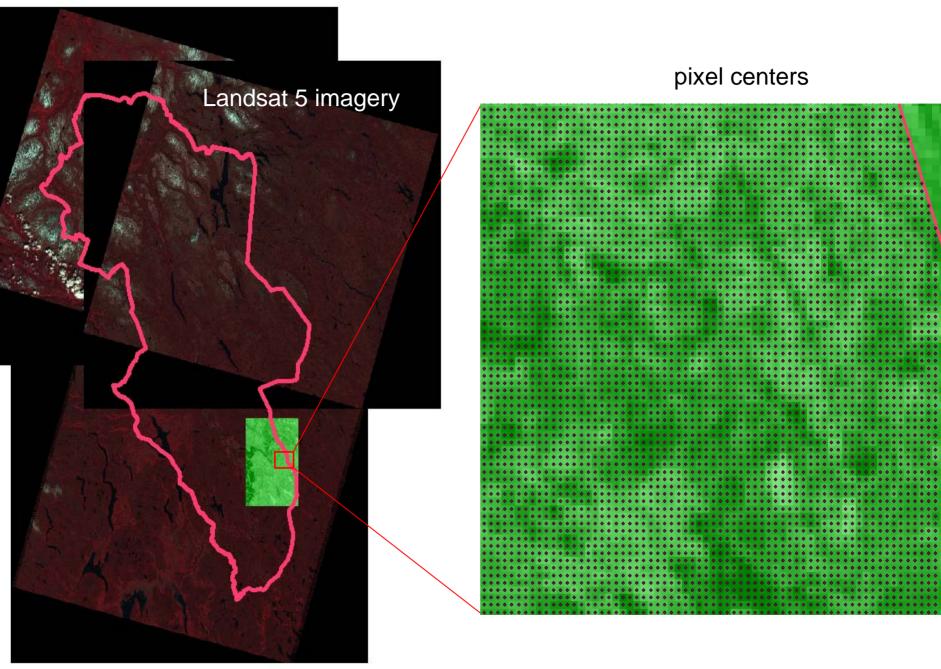
- two-stage sampling procedure:
 - LiDAR-based samples along flight lines from the target area
 - sample ground truth references
 - fit models for parameters of interest (e.g. volume, estimates of biomass)
 - prediction
- on-going colaboration at work-group level(Yale & SLU) regarding development of apropriate estimators

laser-based sampling

Macon Macon

Objectives

- to assess
 - sampling designs
 - regression models
 - statistical properties of estimators
 - sampling methods
 - e.g. relative efficiency of conventional vs. LiDAR based inventories
 - profiling vs. scanning LiDAR
 - the effect of non-sampling errors
- can be integrated with a growth simulator
- teaching tool, etc


laser-based sampling

- input data:
 - three thematic maps based on nearest neighbor estimation
 - volume of productive forest
 - 2200 NFI plots
 - three Landsat 5 Thematic Mapper scenes from June, 2007
 - land-use and site index maps
 - DTMs
- most similar neighbor

laser-based sampling

UNIDERSITY OF HITS SCIENCING

- aiming to preserve the spatial structure existing in the NFI plots a.m.a.p.
- grid of rectangular cells co-registered with the thematic maps
 - 25m and 30m spatial resolution
 - cell boundaries the same as pixel boundaries

laser-based sampling

1041 VERSITY 04 114 SCIE

- to populate the cells
 - define AOIs as squares within the NFI plots used for nearest neigbor estimation
 - crop the trees within AOIs
 - crop the LiDAR measurements within the AOIs
 - positioning cropped areas at the cell centers and reflect them across their boundaries until the whole cell is covered
 - list of geolocated trees and corresponding LiDAR data
 - volume and biomass calculations for each tree

laser-based sampling

UNANYERSITY OF LIFE SCIENCE

- spatial distribution and correlation
 - inherent in the thematic maps
 - geographical trends S-N and E-V
- the spatial distribution of the trees at cell level should not influence the relative efficiency of the estimators
 - test against a population of random located trees at cell level

laser-based sampling

UNIVERSITY OF LIFE SCIEN

- sampling design
 - user defined
 - stratified/non-startified
 - cluster sampling
 - systematic
 - random start first line
 - random start first line, stratified
 - plot shapes:
 - circular
 - square
 - rectangular

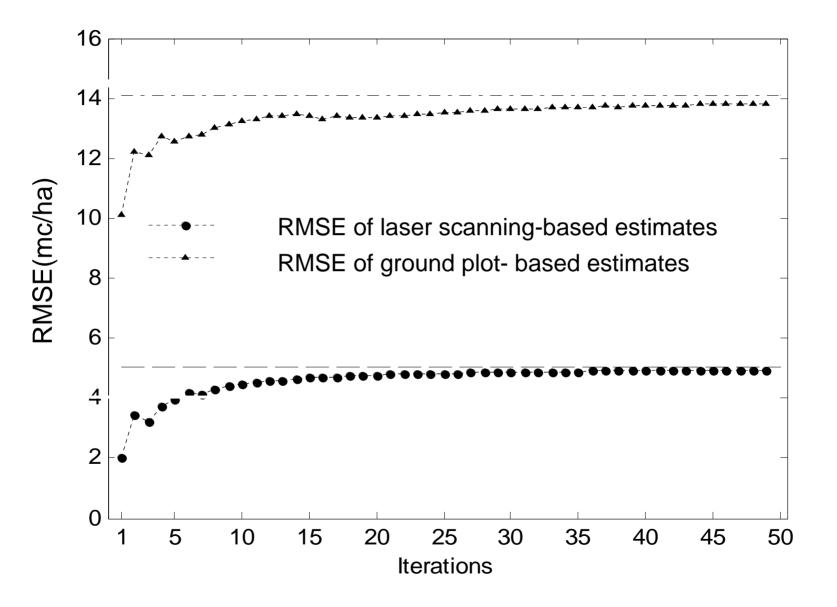
laser-based sampling

UNITERSITY OF THE SCIENCE

- scanning LiDAR
 - strip width
 - input by design
 - should be held constant along flight lines
 - complete cover of square patches
 - square and hexagonal raster for prediction
- stratification
 - user defined
 - based on Hedmark data

laser-based sampling

- independent variables(area based, first echo)
 - percentiles corresponding to various quantiles of laser canopy height
 - canopy densities associated to height percentiles
 - IQR, CV, ...
- response variables (area based)
 - biomass
 - volume
 - no. of stems
 - basal area
 - basal area weighted mean height, ...


laser-based sampling

- prediction models:
 - parametric regression
 - heteroscedasticity
 - multiplicative models(linear regression with logtransformed variables)
 - square root transformation of response
 - non-parametric methods
- possibility for varying the point density

Simulator for airborne laser-based sampling

www.umb.no