Climate change mitigation and tree species change - time perspectives and potential tradeoffs

O. Janne Kjønaas¹, Sunil Mundra² and Håvard Kauserud²

¹NIBIO, ²Universitetet i Oslo

Source: Kjønaas et al., 2021 (in press); Bright et al., 2020; Mundra et al., Submitted

Background

1. Increased C sequestration in forests, including afforestation and tree planting, are proposed to be **amongst the most effective measures to mitigate climate change** (IPCC 2018, Eggermont et al. 2015, Bastin et al. 2019, Sippel et al. 2020).

2. **Tree species change** is proposed as a Norwegian government policy to mitigate climate change by increasing

- 1. annual uptake of CO₂ in the forest
- 2. long-term storage of C

TRADEOFFS? - Effects on biodiversity and nutrient status

BalanC - The impact of increasing spruce plantation area on the carbon balance of forests in Western Norway (2016-2021)

Purpose: Quantify the effects of tree species change on C stocks and changes in paired natural birch stands in Western Norway

C stock changes: Increased C stock in living tree biomass

C stock ratio soil : tree biomass: Birch = $3.3 (\pm 0.4)$ Spruce = $1.4 (\pm 0.1)$

Kjønaas et al., 2021

3

Modeling results: Short term versus long term perspectives?

BRIGHT ET AL.

C capture in forests following tree species change - based on NFI data

- **Short term**, 40 (30 – 60) years:

Loss of C to the atmosphere

Long term: 90 (70 – 120) years:

Accumulation (Δ) of 127 (±80) Mg C ha⁻¹ at 2100,

Offset by 12 Mg C ha⁻¹ (-12%) when including change in surface albedo

Bright et al 2020

Net C capture, including C debt

	C akkumulation living biomass Mg ha ⁻¹	Net C capture living trees Mg ha ⁻¹
Jølster I	132	63
Jølster II	111	45
Ørsta	142	89
Stranda	32	-73
Average	104 (±30)	31 (±1)

Optimalization:

- A need to increase rotation length (>45 – 60 years)
- Biomass in original birch stand is a key young stands at stand initiation stage

Kjønaas et al., 2021

5

Long term storage and stability of SOC?

Coniferous species accumulate more SOC in the forest floor (LFH), broadleaves more in the mineral soil (Vesterdal et al 2013; Mayer et al 2020)

Kjønaas et al., 2021

6

CAR-ES III fianl meeting 06.10.2021

Long term nutrient (im)balance?

Increased biomass growth may increase decomposition of SOC, as availability of N generally constrains biomass production (e.g. Högberg et al 2017; Tamm, 1991).

Significantly lower BS and exchangeable Ca and Mg in the upper mineral soil in spruce stands

7

Adverse impacts to biodiversity?

FUNGI - functional groups

CAR-ES III fianl meeting 06.10.2021

Tree species change in a climate change perspective?

Forecast, regional climate change: increasing temperature and precipitation; increasing periodic drought stress during dry summer spells; generally: increasing storm frequency /intensity

- Increased decomposition of SOC in surface soil
- Storm damage/wind throws S>B
 - Sheding of leaves, rooting depths 2003; Hansson et al., 2011; Dawud et al., 2016)
- Wildfires: S>B
 - Thickness of humus layer >4-6 cm (Rogers et al 2015)
 - Shallow-rooted species rarely survive ground fires (Rogers et al. 2015)
- Drought stress: S>B
 - Rooting depth (Puhe, 2003; Rosner et al. 2018).
- Biotic damages: ?
 - Bark beeetle outbreaks (Jonsson and Lagergren 2018, Kosunen et al. 2019, Timmermann et al. 2018)
 - Others?

BIG QUESTIONS – ANSWERES?

1. TREE SPECIES CHANGE: TO WHAT, WHERE – and HOW MUCH?

2. HOW DO WE BALANCE LONGER TERM CLIMATE MITIGATION and

- short term increase in atmospheric CO₂ tipping point?
- potential long term loss in nutrient status
- loss in biodiversity

3. HOW TO OPTIMIZE - CREATING WIN-WIN SOLUTIONS?

4. WHAT RECOMENDATIONS CAN WE GIVE NOW?

THANK YOU

