Continuous cover forestry and novel water protection methods to mitigate environmental effects of forest management in peatlands

Palviainen M., Peltomaa E., Laurén A., Kinnunen N., Ojala, A., Pumpanen, J.

Continuous cover forestry and water quality

CCF has been suggested to cause less nutrient export to watercourses than clear-cutting:

- Reduces the need for ditch network maintenance and soil
 - preparation
- \succ Diminishes the amount of logging residues
- > Maintains higher nutrient uptake and evapotranspiration
- ➤ Water table is lower
- Runoff and flow peaks are smaller

We studied the effects of harvesting intensity on 1) ground water and ditch water nutrient concentrations and 2) DOC quality and biodegradation to CO₂.

Study area: a drained, herb-rich type Norway spruce dominated forest in southern Finland **Treatments:** clear-cutting, CCF (basal area 12 m²), uncut forest (basal area 25 m²). Harvesting in February 2017.

Ground water: 9 tubes/plot, **Ditch water:** i) from the main ditch flowing through the study area, ii) next to the clear-cut area and iii) from an uncut control forest next to the study site. Sampling during June 2019-May 2020.

Water quality

- Ground water level and DOC concentrations often higher in the clearcut area than CCF and uncut forest
- Ground water total N, NH₄-N and PO₄-P concentrations were generally lower in CCF and uncut plots than in clear-cut plots
- Ditch water: no difference in NH₄-N, NO₃-N and PO₄-P concentrations. Total N and DOC concentrations highest in the main ditch

Palviainen et al., unpublished data

DOC biodegradation – CO₂ fluxes

Water was incubated (at 15°C for 24 h) and produced CO₂ was measured 1, 3, 7 and 21 days after sampling.

- The CO₂ emissions were lower in summer than in the other seasons.
- CO₂ fluxes were considerably higher from the ditch water (50-1000 µg L⁻¹ day⁻¹) than from the groundwater (10-120 µg L⁻¹ day⁻¹).
- Ditch water and groundwater CO₂ production were generally significantly higher in the clear-cut than in the uncut forest and CCF.
- Higher DOC aromaticity in the uncut forest than in the clear-cut or CCF

Ditch water

Biochar in runoff water purification

- Biochar is formed when organic material is heated under limited oxygen concentration in the pyrolysis process.
- Biochar is an effective adsorbent which is based on high porosity, large specific surface area and surface charges
- We studied the capacity of spruce and birch biochar to adsorb N from the runoff water collected from clear-cut drained peatland.

Results

- Biochar adsorbs both organic and inorganic N
- Birch biochar has higher adsorption capacity than spruce biochar
- Fine biochar particles (< 4 mm) have higher adsorption capacity than coarse particles (4-6 mm)
- N adsorption capacity of biochar increases with an increase in the initial N concentration in the water. No adsorption if N concentration is < 0.4 mg L⁻¹.
- Only a small fraction of the adsorbed N was released through desorption when the biochar was exposed to water with low TN concentration.

Fig. Adsorption of total N for birch and spruce biochars with different initial N concentrations in water. The dash lines represent pseudofirst order adsorption model.

Saarela et al. 2020, Kakaei Lafdani et al. 2020, 2021

Conclusions

- The results suggest that partial harvesting used in CCF reduces the concentrations of DOC and nutrients in watercourses, decreases DOC biodegradability, and therefore the aquatic CO₂ emissions compared to clear-cutting in drained peatland forests.
- Thus, CCF can cause less environmental drawbacks than conventional clear-cutting.
- Biochar can be a complementary method supporting water protection in peatlands, and deserves further studies.

Comments, questions?

