Cross cutting theme: Soil quality

Soil texture analysis by laser diffraction – method and instrument comparison with a focus on Nordic and Baltic forest soils

Callesen, I.¹, M. Palvianen, M.², O. Janne Kjønaas³, K. Armolaitis⁴, C. Rasmussen⁵

¹ University of Copenhagen, Department of geosciences and natural resource management, Rolighedsvej 23, 1958 Denmark

² University of Helsinki, Department of Forest sciences, Latokartanonkaari 7, 00014 Finland, 0504486122

³ NIBIO, Department of Forest and Climate, Högskoleveien 14, Aas, Norway

⁴ Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Institute of Forestry, Liepų str. 1, Girionys, LT-53101, Kaunas district, Lithuania

⁵ Aarhus University, <u>Department of Geoscience</u>, Høegh-Guldbergs Gade 2 <u>building 1672</u>, 236, 8000 Aarhus C, Denmark

Our mission

Comparison of particle size distributions from three laboratories applying their own operating procedures and laser diffraction instruments on a set of soil samples from boreal and temperate forest soils Challenge: Igneous rock, mafic and felsic minerals in parent materials, biogenic and sedimentary rocks – Moh's scale

 Soils formed in: MAT -2 to 8 °C and MAP 300 – 4000 mm yr⁻¹ on highly diverse parent materials

Iron rich Podzol, Jølster, Norway (O. Janne Kjønaas), weak soil development in Arenosol, Kalsnava forest, Latvia (Ingeborg Callesen), volcanic Brown Andosol with black basaltic ash layers which can be used to date the profile. At 60-70 cm is Hekla 1510, Árnes, Iceland, (Ólafur Arnalds). Classification according to World Reference Base (2015).

Many available methods and instruments for soil texture analysis - combinations

Basics for physics: Laboratory with constant temperature, free of vibrations

- Sieving, many sieve systems: for ISSS a 2 mm, and a 200 µm are essential
- Hydrometer needs a calibrated floating weight and mm paper some are very old very tedious calibration (Day, 1950)
- Pipette quite rare
- Laser diffraction debated many brands and models widely used on soil samples range ~0 – 2 mm
- Pario and Pario+, based on the ISP method (Dürner, 2017, 2020)

References:

Rasmussen, C, 2020. Particle Sizing in Geosciences: Explanation of Various Techniques and Pretreatments. Aarhus University, Denmark. E-book url: https://ebooks.au.dk/aul/catalog/book/374, <u>doi.org/10.7146/aul.374</u>

CARES III: Three laser diffraction instruments

- Coulter LS230, Helsinki University
- Malvern Mastersizer 2000, range 0.02 my to 2 mm, wet
 and dry unit
 Mastersizer 2000 technical specifications

Optical Unit	Specification
re range	Materials in the range 0.02µm to 2000µm
Neasurement principle	Mie scattering
letection systems	Red light: forward scattering, side scattering, back scattering Blue light: wide angle forward and back scattering
light sources	Red light: helium-neon laser Blue light: solid-state light source
Optical alignment system	Automatic rapid align system with dark field optical reticle
ample dispersion unit interchange	Sample dispersion units automatically recognized, configured and enabled on insertion of measurement cell cassettes into sizer
ser system	Mastersizer 2000: Class 1 laser product Autosampler 2000: Class 2 laser product

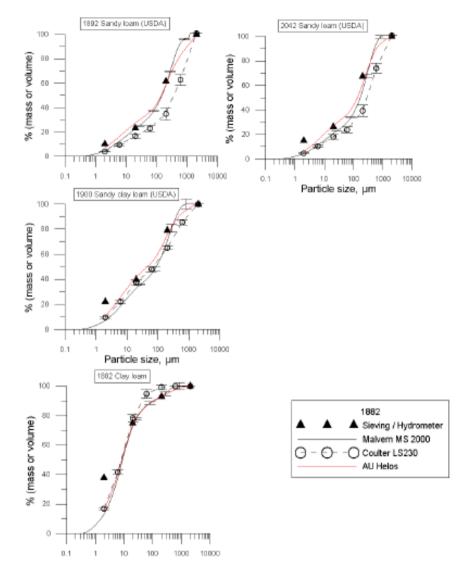
- Sympatec Helos, range 0.0018 mm 3.5mm, three lenses
 - Wet unit
 - Gravimetric dry unit

Laser diffraction is not a wonder method, pretreatment of samples is still needed

Basic treatment is air-drying, gentle crushing and 2 mm sieving

Evaluate:

- Humus (Carbon) 0 20% (10%)
- Calcium carbonate (0 50%)
- Sesquioxides (0 10%)


Pretreatment to disperse particles, break aggregates:

- Ultrasonication
- Mechanical mixing by milkshaker
- End-over-end shaking
- Chemical dispersing agent: $Na_4P_2O_7 \cdot 10H_2O$

Effect:

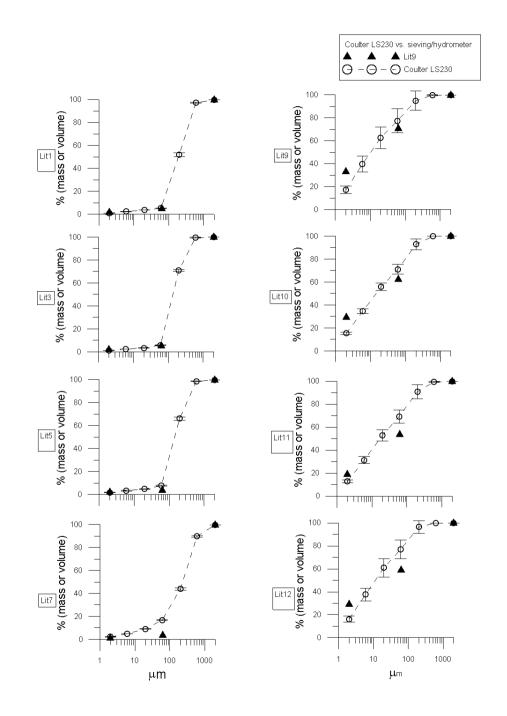
Soft minerals and may dissolve or disintegrate – pretreatment affects results

Soil texture by laser diffraction and hydrometer/sieving

2. Three instruments, three different operating procedures
Small sample size – causing PSD uncertainty?

- Sympatec Helos, Aarhus University

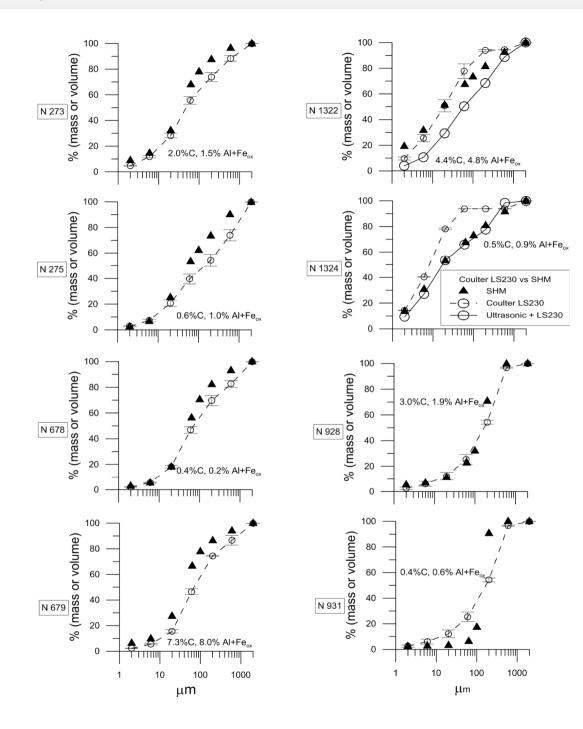
- Coulter LS30, Helsinki University


- Malvern Mastersizer 2000, University of Copenhagen

Sample size most often 0.3 to 0.5 g.

Figure 1 Comparison of three particle size laser instruments (pretreatment ultrasound 2 min full effect, no H_2O_2). On the Sympatec Helos, samples were wet separated and separates were measured on two lenses, These PSD's were constructed from 2 PSD's,

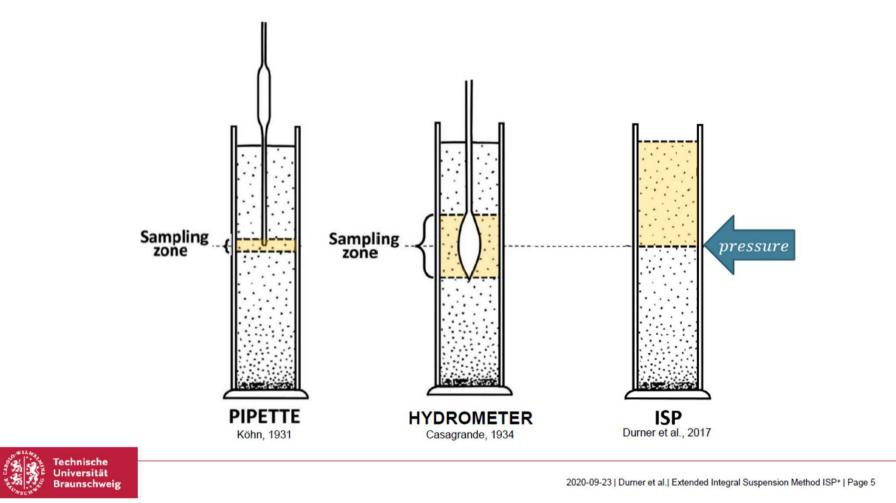
Repeatability good, due to 1 or 1.4 mm Sieving. Analysing only the 0-1 µm fraction.



Sedimentation vs. laser

Clay 2 µm – equivalency diameter

6 μm - used in Danish NFI on 300 samples (based on reference sample measurements, Callesen et al. 2019)



Coulter, Helsinki University, Soil samples from Norway – spodic material and heavy minerals

Texture issues: Stokes law: $v = \frac{2}{9}(d_1 - d_2)gr^2/\eta$

d₁, density of minerals CaCO₃, SiO₂,2.65 g cm⁻³ heavy minerals, e.g. biotite avg 3.09 g cm⁻³ **K(Mg,Fe²⁺)₃[AlSi₃O₁₀](OH,F)₂**

Durner, W., S.C. Iden, and G. von Unold (2017): The integral suspension pressure method(ISP) for precise particle-size analysis by gravitational sedimentation, *WaterResources Research*, 53, 33-48, doi:10.1002/2016WR019830 (open access).

Pario

C DEVICES PREPARATION INUNING READY TO DRAIN FIP PARAMETERS Sample name File name Status Sample name File name Status Example CLAY C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USersithD109L Image: Clay C'USErsithD109L Image:	METER Pario CONTROL - Gie170	a						- 0	×	\blacksquare
Sample name File name Status Export × SAMPLE DATA Example CLAY C:\Usersithb109 Image: Comparison of the status Image: Comparison of the status Measurement Data V862a L:\Documents\Fo Image: Comparison of the status Image: Comparison of the status Sample name Gie 170a Image: Comparison of the status Sample name Gie 170a Image: Comparison of the status Image: Comparison of the status <th>💾 File 🛛 🕹 New Meas</th> <th>surement 📂 Open Measi</th> <th>urement</th> <th></th> <th></th> <th></th> <th>Feedback Se</th> <th>ettings Help 📘</th> <th></th> <th>Q</th>	💾 File 🛛 🕹 New Meas	surement 📂 Open Measi	urement				Feedback Se	ettings Help 📘		Q
Example CLAY C:Usersithb109 Image: system Measurement Data V862a L:UDocuments/Fo Image: system Sample name Gie170a Gie170a L:UDocuments/Fo Image: system Sample name Gie170a SAMPLE: Gie170a Image: system Fitting Measurement Duration Image: system Measured Data Particle Distribution Texture Class Soil Tri: Measurement Duration Image: system 10 0.0 0.0 0.0 0.0 0.0 Sispension 1.000 L 10 0.0	< DEVICES 0	PREPARATION 0	RUNNING	0	READY TO DRAIN	O FI	PARAMETERS		× 1	-
Example CLAY C:Usersithb109 Image: Supertion of the superticution of the superticution of the superimeter of the superticution of the superimeter of the superticution of the superimeter of the superime		Sample name	File name	Status		^	✓ SAMPLE DATA		E	త
Gie 170a L'Documents/Fo Export X SAMPLE: Gie 170a Fiting File name L'Documents/Fors Pario Mode SAMPLE: Gie 170a Fiting Big h Counter for homogenization Big h Measured Data Particle Distribution Texture Class Soil Tri: Solgension Big h 0.6 0.6 0.6 0.6 0.6 0.6 0.6 Soil Tri: 0.00		Example CLAY	C:\Users\tnb109\	0	Export	×	Measurement Data		221	0
Gie170a L\Documents\Fo Export Sample name Gie170a SAMPLE: Gie170a Fitting Fitting Fitting Fitting Measured Data Particle Distribution Texture Class Soil Tri: Measurement Duration 8th n 0.4		V862a	L:\Documents\Fo	•	Export	×			_	0
SAMPLE: Gie170a Fitting Measured Data Particle Distribution Texture Class Soil Tris Measured Data Particle Distribution Texture Class Soil Tris Measured Data Particle Distribution Texture Class Soil Tris Suspension Data Volume of suspension 1.000 L Particle density 2.65 grcm3 Mass of particles 25.0 g g Mass of dispersant 1.00 g g		Gie170a	L:\Documents\Fo	•	Export	×				9
SAMPLE: Gie170a Fitting Measurement Duration 8 th Counter for homogenization 8 th Counter for homogenization 60 th S Measured Data Particle Distribution Texture Class Soli Tri: Measurement Duration 8 th 0 th <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>16</td>										16
Measured Data Particle Distribution Texture Class Soil Tri: Homogenization method Overhead shaking Image: Class of the state of the		SAMPLE: Gie170a				Fitting	Measurement Duration			P 3
1.0 0.8 0.6 0.4 0.2 0.2 0.3 20 63 200 630 2000 Particle diameter [µm] 0.0 0.										
0.8 0.6 0.4 0.4 0.4 0.2 0.2 0.2 0.2 0.4 0.5 g/cm3 0.6 <td< th=""><th></th><th>Measured Data</th><th>Particle Distribution</th><th>Т</th><th>exture Class</th><th>Soil Tria</th><th>Homogenization method</th><th>Overnead snaking V</th><th></th><th>P</th></td<>		Measured Data	Particle Distribution	Т	exture Class	Soil Tria	Homogenization method	Overnead snaking V		P
0.6 0.4 0.2 0.2 0.0 0.4 0.2 0.0 0.2 0.0 0		1.0		_	•		Suspension Data		<	
0.6- 0.4- 0.2- 0.0- 2 6.3 20 63 200 630 2000 Particle diameter [µm] DF DF DF Mass of particles Mass of dispersant 1.00 ↓ g 05-10			·	8				1 000		⊐
0.4 0.2 0.0 2 6.3 20 63 20 63 200 630 200 630 200 630 2000 Particle density 2.65 g/cm3 Mass of particles 25.0 g g/cm3 tirs 09 tirs 05-10 tirs 05 tirs 05-10 t 05-10 t 10 10 10 10 10 10 10 10 10 10 10 10 10		e 0.6						L		DAN
0.0 2 6.3 20 63 200 630 2000 Particle diameter [µm] Ass of dispersant 1.00 ₽ g		at io	/				Particle density		:m3	
2 6.3 20 63 200 630 2000 Particle diameter [µm]		0.2-	/		1	DF	Mass of particles			
			.3 20 6	3	200 630	2000	Mass of dispersant	1.00 🜩 g	05-1	10-
							✓ SIEVE DATA		,c	5

01

9

16

P

P

🐑 🗘

۵ 🦳

DAN

09:56

tirsdag

05-10-2021

 \Box

versus Pario+ P METER Pario CONTROL - Gie170a_glass_I File A New Measurement 🗁 Open Measurement DEVICES 0 < PREPARATION 0 RUNNING 0 READY TO DRAIN **Release of suspension ISP** measurement Sample name File name Status Gie170a glass I L:\Documents\Fo... Export Measurement Data Example LOAM × C:\Users\tnb109\.. Export Sample name Gie170a_glass_l Example SAND C:\Users\tnb109\.. \checkmark Export X File name L:\Documents\Fors Pario Mode PARIO Plus Example SILTY CLAY × \sim C:\Users\tnb109\.. \checkmark Export 02:30 😩 hh:mm Ready to drain after SAMPLE: Gie170a glass I 60 🗘 s Counter for homogenization Overhead shaking Homogenization method V Particle Distribution Measured Data **Texture Class** Soil Tria Suspension Data 1.0 0.8 1.000 🗘 L Volume of suspension 0.6 2.65 - g/cm3 Particle density 0.4 Gie170a_glass_I Sieve data CDF 30.0 🗘 g 0.2 Mass of particles 1.20 ÷ g 0.0 Mass of dispersant 2 6.3 20 63 200 630 2000 Particle diameter [µm] 0.980 🗘 g Dry Mass in effluent

Conclusion

- Different approaches to pretreatment at different labs

 soil geography
- Still various methods for measuring soil texture very different analytical principles
- Knowledge of soil constituents and pretreatment effects is important – humus, lime, spodic material, volcanic material
- Laser diffraction can yield instrument and set-up specific results – great for large number of samples, but remember calibration against reference samples.
- Pario+ is a viable alternative. Capacity at UCPH is 2-4 per day – learning activity.