

Specific purity of hybrid larch FRM: How much does it matter?

G. Philippe, S. Matz, C. Buret, L.E. Pâques

Pour mieux affirmer ses missions, le Cemagref devient Irstea

LARIX 2012: Larch in a warm climate

8th international symposium of IUFRO Working Group S2.02.07 – Larch Breeding and Genetic Resources

Hallormsstaðaskógur National Forest, Iceland, 11 - 13 September 2012

Dunkeld estate (Scotland): a place of pilgrimage

Different kinds of orchards

Nb of genotypes		Female	Planting	Pollination
9	3	species	design	
few → dozens	few → dozens	EL or JL or both	EL & JL intimately	open
1	1 → dozens	EL or JL	mixed or alternating rows	
			separate orchards	SMP

maternal / paternal species

Crossings among clones + self-pollination

Case of s.o. with a single maternal clone

Self-pollination only ... assuming the s.o. is well isolated from external pollen

The crops of hybridisation orchards composed of a mixture of seeds

- hybrid seeds
- pure species
 - * crossings among different clones
 - * selfing

(+ hybrids or pure species due to pollen contamination)

Hybrid rate varies according to genetic, climatic and anthropic factors

- the number of genitors of the mother species
- contribution of EL and JL clones to pollen cloud

- flowering overlap between EL & JL

- clonal phenology, « selfing ability »
- climate during flower initiation

- flower induction treatments

- SMP

→ Hybrid purity will fluctuate from one orchard to another but also from year to year

Species purity can now be quantified in any s.o.

Distinguishing hybrids to the naked eye impossible (seeds) or long (seedlings)

Pâques et al. (2006)

1990's: isozymes but restrictions

Bergmann, Ruetz (1987), Häcker, Bergmann (1991), Ennos, Tang Quian (1994)

2000's: molecular markers based on cytoplasmic DNA Acheré et al. (2004)

→ Highly variable HL% in orchard crops (10-90%)

- 1- Effect of HL purity on stand productivity and quality
- * To what extent are hybrids superior to pure species?
- * Is there a threshold below which HL% should not fall to ensure convenient stand production?
- * Is the importance of HL% the same for any kind of orchard?

2- Consequences of fluctuating FRM species purity in **seed orchard testing**

Principle:

- Determination of taxonomic status of trees present in two s.o. testing trials
- Comparison of hybrid and pure species populations within each variety
- Estimation of thinning effect on HL%

M&M: studied varieties

Variety	orchard	Planting year	Country	Mother species	Number clones (EL/JL)
Halle	Halle	1959	В	JL & EL	<u>15/15</u>
FP 237	Grund	1978	DK	EL	<u>1</u> /17
FH 201	Les Barres	1976	F	EL	<u>1</u> /FS
Vaals	Vaals-01	1969	NL	EL	<u>1</u> /26
Esbeek	Esbeek-01	1971	NL	EL	<u>1</u> /4
Maglehem	51 Maglehem	1956	S	JL	8/ <u>1</u>

open pollination in all the orchards except FH 201 (SMP)

M&M: Variety testing trials

Site 1

800 m elevation deep soil granite 8°C, 1100 mm JL

Site 2

1000 m elevation shallow soil limestone 6℃, 1500 mm

EL

- Bud collection at age 10 or 14
- Taxa identification (INRA) using markers based on cytoplasmic DNA (LL and F-13)
- Were determined:
 - * Site 1: Halle, FH 201, Esbeek, Maglehem (2 blocks)
 - * Site 2: id + Vaals and FP 237 (2 blocks)

Adaptation – Growth – Stem form

Stem straightness

Score 1

Score 5

Results: Proportion of hybrids

several clones

single mother clone

Results: hybrids vs pure species - Adaptation traits

No difference between taxa for adaptation traits

But hybrid % higher in site 2 (15% mortality) than in site 1 (4% mortality)

Results: hybrids vs pure species - Mortality

	Survival		
EL	38%		
HL	86%**		

Results: hybrids vs pure species - Growth

single mother clone

Volume = $C^2H^2/8\pi$ (H-1.30) (Pardé 1961)

Results: hybrids vs pure species - Growth

Maternal species

blue: JL

red: EL

Results: hybrids vs pure species – Growth

Hybrids are always more vigorous than pure species but their superiority varies according to the variety and the site

Two explanatory factors:

- → the number of maternal clones
- → the adaptation of mother species to the planting site

Results: hybrids vs pure species – Further growth

ability to grow + competition

Results: hybrids versus pure species – Stem form

- <u>H/circumference</u>

Hybrids are less slender than pure species in most of the varieties

- Stem straightness and basal sweep

Hybrids are somewhat less straight but differences rarely significant

Results: effect of 1st thinning on species purity

Thinning at age 10 (site 1) and 14 (site 2)

	Density (number of trees per ha)			
	at planting	before thinning	after thinning	
Site 1	1667	1610	940	
Site 2	1667	1440	790	

Effect of 1st thinning on specific purity

Simulation of 2nd and 3rd thinning

Simulation of 2nd and 3rd thinnings

They depend on **forest owner strategy** and the **variety**:

<u>Stem form</u> objective: hybrid richness does not matter much but nonsense to target only form with hybrid varieties

Timber production

HL ~ pure species → moderate loss of productivity
HL >> pure species → potentially high risk
but limited consequences if hybrid% > 60-70%

Biomass production requires 100% hybrids

- 1- Some so-called HL varieties have a low hybrid rate
- → abstain from collecting the cones in high risk years
- → set a minimal threshold of purity for commercialisation
- 2- Hybrid superiority varies with the variety number of maternal clones + adaptation of mother species
- 3- Hybrid rate increases after thinnings based on vigour
 But HL% < 100% if low initial species purity → loss of income
 FRM species purity should be > 60-70% in high risk varieties

NO SEED LOT SHOULD BE COMMERCIALISED OR SHARED FOR TESTING WITHOUT MENTIONING HYBRID PURITY

